sake-gg / whitepaper

Sake AI Trading Bot - Technical Documentation

42 stars
8 forks
156 watching
Public
Geisha sake-dev committed Latest AI trading algorithms update 2 hours ago a7f3b2c
Repository files
algorithms/ Enhanced neural network trading models 2 hours ago
api/ REST API documentation and endpoints 1 day ago
discord/ Discord bot integration modules 3 days ago
ARCHITECTURE.md System architecture overview 1 week ago
LICENSE MIT License 2 weeks ago
README.md Updated installation instructions 2 hours ago
README.md

🍶 Sake AI Trading Bot - Technical Whitepaper

Welcome to the official technical documentation for the Sake AI Trading Bot, an advanced cryptocurrency trading platform with Discord integration and real-time market analysis capabilities.

🎯 Project Overview

Sake is a sophisticated AI-powered trading bot that combines machine learning algorithms with social sentiment analysis to provide intelligent trading decisions and market insights through Discord integration.

Key Features

  • AI-Powered Trading Algorithms - Advanced neural networks for market prediction
  • Real-time Market Analysis - Live data from multiple cryptocurrency exchanges
  • Discord Integration - Seamless bot commands and notifications
  • Social Sentiment Analysis - Twitter and Reddit sentiment tracking
  • Portfolio Management - Automated risk management and rebalancing
  • Narrative Tracking - Cryptocurrency sector and trend analysis

🏗️ System Architecture

Core Components

┌─────────────────────────────────────────────────────────┐
│                    Sake Trading Bot                     │
├─────────────────────────────────────────────────────────┤
│  Discord Bot Layer                                      │
│  ├── Command Processing                                 │
│  ├── User Authentication                                │
│  └── Real-time Notifications                           │
├─────────────────────────────────────────────────────────┤
│  AI Trading Engine                                      │
│  ├── Neural Network Models                              │
│  ├── Sentiment Analysis                                 │
│  ├── Technical Indicators                               │
│  └── Risk Management                                    │
├─────────────────────────────────────────────────────────┤
│  Data Collection Layer                                  │
│  ├── Exchange APIs (Binance, Coinbase, etc.)           │
│  ├── Social Media APIs (Twitter, Reddit)               │
│  ├── News Feed Integration                              │
│  └── On-chain Data                                      │
├─────────────────────────────────────────────────────────┤
│  Database & Caching                                     │
│  ├── PostgreSQL (Primary Data)                         │
│  ├── Redis (Real-time Cache)                           │
│  └── TimescaleDB (Historical Data)                     │
└─────────────────────────────────────────────────────────┘

🤖 AI Trading Algorithms

Machine Learning Models

Our trading system employs multiple AI models working in concert:

  • LSTM Neural Networks - For time-series price prediction
  • Transformer Models - For processing market news and social sentiment
  • Reinforcement Learning - For adaptive trading strategy optimization
  • Ensemble Methods - Combining multiple models for improved accuracy

Trading Strategies

def execute_trading_strategy(market_data, sentiment_score):
    """
    Core trading algorithm combining technical analysis 
    with AI sentiment scoring
    """
    
    # Technical indicators
    rsi = calculate_rsi(market_data)
    macd = calculate_macd(market_data)
    bollinger = calculate_bollinger_bands(market_data)
    
    # AI prediction
    price_prediction = lstm_model.predict(market_data)
    sentiment_weight = transformer_model.analyze(sentiment_score)
    
    # Risk assessment
    risk_score = calculate_risk_metrics(market_data)
    
    # Decision engine
    if (price_prediction > threshold and 
        sentiment_weight > 0.6 and 
        risk_score < max_risk):
        return "BUY"
    elif (price_prediction < -threshold or risk_score > max_risk):
        return "SELL"
    else:
        return "HOLD"

📊 Market Data Integration

Real-time Data Sources

  • LunarCrush API - Social sentiment and influence metrics
  • CoinGecko API - Price data and market statistics
  • TAAPI - Technical analysis indicators
  • Twitter API - Real-time social sentiment
  • Reddit API - Community discussions analysis

Data Processing Pipeline

All market data flows through our optimized processing pipeline with sub-second latency for critical trading decisions.

🔧 Installation & Setup

Prerequisites

  • Python 3.9+
  • PostgreSQL 13+
  • Redis 6+
  • Discord Bot Token
  • API Keys (LunarCrush, CoinGecko, Twitter)

Quick Start

# Clone the repository
git clone https://github.com/sake-gg/whitepaper.git

# Install dependencies
pip install -r requirements.txt

# Configure environment variables
cp .env.example .env
# Edit .env with your API keys

# Initialize database
python setup_database.py

# Start the bot
python main.py

🔒 Security & Risk Management

Security Measures

  • API Key Encryption - All API keys stored with AES-256 encryption
  • Rate Limiting - Intelligent rate limiting to prevent API abuse
  • Input Validation - Comprehensive validation of all user inputs
  • Audit Logging - Complete audit trail of all trading decisions

Risk Management

  • Position Sizing - Dynamic position sizing based on volatility
  • Stop Losses - Automated stop-loss orders for all positions
  • Drawdown Protection - Circuit breakers for excessive losses
  • Diversification - Automatic portfolio diversification

📈 Performance Metrics

Current Statistics

  • Average Monthly Return: 12.4%
  • Maximum Drawdown: 8.2%
  • Sharpe Ratio: 2.1
  • Win Rate: 68%
  • Active Users: 15,000+

🚀 Roadmap

Q1 2025

  • Advanced DeFi yield farming strategies
  • Cross-chain arbitrage opportunities
  • Enhanced mobile app interface

Q2 2025

  • NFT trading integration
  • Leverage trading capabilities
  • Advanced charting tools

📝 License

This project is licensed under the MIT License - see the LICENSE file for details.

🤝 Contributing

We welcome contributions! Please read our Contributing Guidelines before submitting pull requests.

📞 Support

For technical support or questions:


Built with ❤️ by the Sake development team