Welcome to the official technical documentation for the Sake AI Trading Bot, an advanced cryptocurrency trading platform with Discord integration and real-time market analysis capabilities.
Sake is a sophisticated AI-powered trading bot that combines machine learning algorithms with social sentiment analysis to provide intelligent trading decisions and market insights through Discord integration.
┌─────────────────────────────────────────────────────────┐
│ Sake Trading Bot │
├─────────────────────────────────────────────────────────┤
│ Discord Bot Layer │
│ ├── Command Processing │
│ ├── User Authentication │
│ └── Real-time Notifications │
├─────────────────────────────────────────────────────────┤
│ AI Trading Engine │
│ ├── Neural Network Models │
│ ├── Sentiment Analysis │
│ ├── Technical Indicators │
│ └── Risk Management │
├─────────────────────────────────────────────────────────┤
│ Data Collection Layer │
│ ├── Exchange APIs (Binance, Coinbase, etc.) │
│ ├── Social Media APIs (Twitter, Reddit) │
│ ├── News Feed Integration │
│ └── On-chain Data │
├─────────────────────────────────────────────────────────┤
│ Database & Caching │
│ ├── PostgreSQL (Primary Data) │
│ ├── Redis (Real-time Cache) │
│ └── TimescaleDB (Historical Data) │
└─────────────────────────────────────────────────────────┘
Our trading system employs multiple AI models working in concert:
def execute_trading_strategy(market_data, sentiment_score):
"""
Core trading algorithm combining technical analysis
with AI sentiment scoring
"""
# Technical indicators
rsi = calculate_rsi(market_data)
macd = calculate_macd(market_data)
bollinger = calculate_bollinger_bands(market_data)
# AI prediction
price_prediction = lstm_model.predict(market_data)
sentiment_weight = transformer_model.analyze(sentiment_score)
# Risk assessment
risk_score = calculate_risk_metrics(market_data)
# Decision engine
if (price_prediction > threshold and
sentiment_weight > 0.6 and
risk_score < max_risk):
return "BUY"
elif (price_prediction < -threshold or risk_score > max_risk):
return "SELL"
else:
return "HOLD"
All market data flows through our optimized processing pipeline with sub-second latency for critical trading decisions.
# Clone the repository
git clone https://github.com/sake-gg/whitepaper.git
# Install dependencies
pip install -r requirements.txt
# Configure environment variables
cp .env.example .env
# Edit .env with your API keys
# Initialize database
python setup_database.py
# Start the bot
python main.py
This project is licensed under the MIT License - see the LICENSE file for details.
We welcome contributions! Please read our Contributing Guidelines before submitting pull requests.
For technical support or questions:
Built with ❤️ by the Sake development team